
Tao: Facebook’s Distributed Data 
Store for the Social Graph

Authors : Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov

Dmitri Petrov, Lovro Puzar, Yee Jiun Song, Venkat Venkataramani
Facebook, Inc.

Presented By : Tuhin Tiwari

CS 848 University of Waterloo 1



“I don’t know 
whether it was the 
nature of the paper 
but it took so long to 
read this paper. Every 
single line seems 
important” -
Anonymous

CS 848 University of Waterloo 2



Image SourceCS 848 University of Waterloo 3

https://www.123rf.com/photo_16580130_abstract-word-cloud-for-distributed-database-with-related-tags-and-terms.html


The Social Graph, where Facebook’s 
billion active users record every 
detail of their lives. Most users
consume more content than they 
create, resulting into a read-heavy 
workload.

CS 848 University of Waterloo 4



Memcache

• Initially, Facebook’s web-
servers used memcache as a 
lookaside cache.

• This lookaside cache was used 
for all the reads & writes, 
directly accessing MySQL.

• When a web-server needed 
data, it first requests from 
memcache and higher cache-
hit rate meant good 
performance.

CS 848 University of Waterloo 5



Customize, Aggregate & Filter

Need to hide this 

picture from Mom
My Profile picture should be private

Oh God, this note is from 4 
years back, too 

embarrassing. I need the 
privacy to be only me.

Why does it keep 

showing me these 

ads that don’t 

interest me? Friends of Friends can view but not 
like or comment

I will follow Game of 

Thrones Page
TAO

CS 848 University of Waterloo 6



Social Connections 
& Access
• Most information on Facebook is best 

represented using a social graph.

• The rendered content is extremely 
customizable depending on the users privacy 
settings and preferences. Data needs to be 
stored as-is and filtered when 
viewed/rendered.

• The representation of the information, on the 
right, as a key-value store like lookaside cache 
becomes time-consuming.

• TAO resolves data-dependencies and check 
privacy every time content is viewed. Social 
graph is pulled and not pushed.

CS 848 University of Waterloo 7



Problems with lookaside architecture

• Inefficient edge lists : Key-value cache doesn’t fit for list of edges. Changes to a single 
edge would require fetching the entire edge list and then reloading the list. – Other 
possible alternatives?

• Distributed control logic : No communication between clients where control logic of 
lookaside is run. In an object-associations model, TAO system controls everything and 
it can move the control logic into the cache itself which solves the problem.

• Expensive read-after-write consistency : Asynchronous master/slave replication for 
MySQL. Time elapsed between writes to the master and the local replica. TAO updates 
the replica’s cache at write-time.

CS 848 University of Waterloo 8



TAO Data Model & API

• TAO provides Objects & Associations as basic units of access in the system.

• Data model consists of two main entities:
• Object : TAO objects are typed-nodes. Mapped from a “unique id” to “object type, and key-value pairs”.
• Association : TAO associations are typed directed edges. Identified by the “source object, association type, 

and destination object”, which is mapped to a “32-bit time field and key-value pairs”.

CS 848 University of Waterloo 9



APIs – Objects 
& Associations

• Object API – Allocates a new object & id and 
performs all operations with that id.
• Association API – Bidirectional edges are 

modeled as two separate associations. 
Associations configured with an “inverse type” 
and different operations modify the link 
between two object ids accordingly with an 
association.

CS 848 University of Waterloo 10



Association Query API

• This can be modeled as assoc_range(CHECKIN_ID, 
COMMENT, 0, 50)

Query : “Show me the most 
recent 50 comments on Alice’s 

check-in”

• This can be queried by assoc_count(CHECKIN_ID, 
CHECKIN)

Query : “How many check-ins at 
the Golden Gate Bridge?”

• This is modeled as assoc_time_range(CHECKIN_ID, 
CHECKIN, 13, 14)

Query : “Show me the comments 
on Alice’s check-in posted 
between 1 PM and 2 PM”

CS 848 University of Waterloo 11



TAO Architecture – Storage Layer
• MySQL for persistent storage to consider data accesses that don’t use the TAO 

API like backup, bulk import, migrations, etc.

• Other systems like LevelDB didn’t fit their needs in this regard.

• To handle the large volume of data, data is divided into logical shards.

• One server to many shards.

• Tune the shard to server mapping for load-balancing.

• All object types – stored in one table and all association types separate in 

another table.

• Objects – shard_id & association is stored on shard of its id1(originating object). 

This ensures better locality and helps with retrieving objects and associations 

from the same host.

• Objects data – serialized and stored against id. Association – key : id and data 

being serialized and stored into one column.

CS 848 University of Waterloo 12



TAO Architecture – Caching Layer
• Client requesting information connects to cache which 

implements the complete API for all communications with 
databases.

• Cache misses & write requests are requested from other 
caches/databases.

• In-memory cache holds objects, association lists and 
association counts.

• LRU policy to fill and evict cache on demand.
• Inverse association-write operation may involve two shards 

of caches.

CS 848 University of Waterloo 13



Client Communication Stack

• Each cache belongs to a tier 
consisting of multiple such 
caches and the database.

• Adding more caching servers
to a tier will make it fatter 
and hence prone to hot 
spots.

• Communication cost grows 
quadratically.

CS 848 University of Waterloo 14



TAO Architecture 
Leaders & 
Followers

• A two level hierarchy divides the region into multiple 
follower tiers but only 1 leader tier.

• Read misses & writes are always handled by Leader.
• Read hits by follower, where request is first landed or by 

another follower tier.
• Consistent hashing alleviates the hotspots which makes 

addition of tiers easier without rebalancing caches too 
much.

• Followers can offload read workload for popular 
celebrities(objects) to the client and clients can cache 
them for longer.

• Single leader ensures consistency and by mediating all 
the requests from id1, it also protects the database from 
thundering herds.

CS 848 University of Waterloo 15



Geographical Scaling
• High workload is handled by the leader-followers configuration.

• Assumption – Network latencies from follower to leader and leader to database 
are low.

• For data center located in China and North America, network round trip can 
become a bottleneck.

• Master-slave architecture with write to master & reads handled locally.

• TAO follower must be local to a tier holding a complete copy of social graph –
infeasible(expensive)

• Solution : Choose data center locations that are clustered into a few regions 
(reducing latency)

• Writes forwarded by the local leader to the leader with the master database.

• All reads can be satisfied with the compromise of returning stale data to the 
clients. Querying the same follower will give the user a consistent view of TAO

CS 848 University of Waterloo 16



Implementation – Caching Servers

Layer between clients & 
databases

Memory Management : Slab 
allocator, thread-safe hash table, 
LRU eviction among items of 
equal size, dynamic slab 
rebalancer (maintains LRU ages 
consistent throughout)

Partition RAM into arenas by 
association or object types

Partitioning of RAM 
extends cache lifetime of 
important types

To prevent memory overhead of 
pointers for small items(in the 
main hash table), these items 
are stored separately using 
direct-mapped 8-way 
associative caches with no 
pointers. Sliding the entries 
down tracks the LRU order in 
each bucket.

Optimization : Additional 
table for mapping active 
‘atype’ allows to hold 20% 
more items in cache by 
recording absence of id2 and 
only taking 10 bytes instead 
of 14.

CS 848 University of Waterloo 17



MySQL Mapping

Fields of an object table 
allocated in a shard are 
stored in a single ‘data’ 

column, serialized.

Objects benefitting from 
separate data management 

policies are stored in 
separate custom tables.

Associations – similar to 
objects, but their tables 

have additional indexes to 
support range queries.

Saving on the expensive 
“SELECT COUNT” queries, 

association counts are stored 
in a separate table.

CS 848 University of Waterloo 18



Cache 
Sharding & 
Hot Spots

Consistent hashing used to map shards to cache 
servers within a tier

Load imbalance on followers might get created due 
to semi-random assignment of shards.

TAO rebalances followers with shard cloning (reads 
to a shard served by multiple followers in a tier)

Cloning can also help distribute the load of a popular 
object queries.

If access rate of an object exceeds a threshold, TAO 
client caches the data and version.

The access rate can also be used to throttle client 
requests for very hot objects.

CS 848 University of Waterloo 19



High-degree 
Objects

• TAO doesn’t cache the complete association list for 
objects that have more than 6000 associations with the 
same atype.

• For an assoc_get query returning empty result, high-
degree objects almost always go to the database as id2 
could be in the uncached tail.

• TAO’s solution :
• Choose assoc_count to determine direction of the 

query and also leveraging application-domain 
knowledge to improve cacheability.

• Limit the search to associations who time is greater 
than object’s creation time.

CS 848 University of Waterloo 20



Consistency

• Eventual consistency : After a write, TAO guarantees eventual delivery of an invalidation and a refill to all tiers.

• Replication lag < 1 second

• Synchronous update to the cache by returning a changeset from a master leader when write is successful. All 
associated shards(inverse and ones with Slave leader) should be updated before returning to the caller.

• The race condition while applying changeset to follower’s cache might arise the risk of cache being stale. TAO 
resolves this by keeping a version number(both in persistent storage & cache) that is updated during each update.

• Rare but can happen? – Slave region’s storage server to receive an update takes longer than it does to evict. (risk of 
evicted value being reloaded)

• Not strong consistency to single source of truth, MySQL. It gives us the chance to give consistency for smaller 
subset of requests. 

CS 848 University of Waterloo 21



Failure Detection & Handling

Database failures : If the master goes down, one of the slaves automatically comes 
up. Global configuration maintained to mark down crashes. When slaves are down, 
misses are redirected to TAO leaders hosting the DB master. Additional binlog trailer 
is run on the Master database, and the refills & invalidates are delivered inter-
regionally.

Leader failures : Followers reroute read misses directly to the database. Writes are 
routed to a random replacement leader performs the operations and also enqueues 
asynchronous invalidation to the original leader.

CS 848 University of Waterloo 22



Failure Detection & Handling

Refill & invalidation failures : Problem of permanent failure 
of leader is solved by sending bulk invalidation operations 
that invalidates all objects and associations from a shard_id.

Follower failures : TAO follows a primary and backup follower 
tier. Followers in other tiers share the responsibility.

CS 848 University of Waterloo 23



Production 
Workload

Amortization in operational costs
Multi-tenancy enables new applications to link to existing data
Allows 64-bit id of an object to be handled uniformly without a step 
to resolve otype

Multi-
tenancy :

Reads more frequent than writes
Most edge queries have empty results
Query frequency, node connectivity and data size have distributions 
with long tails

Observations 
on 6.5 mn 
requests :

CS 848 University of Waterloo 24



Production Workload Statistics

CS 848 University of Waterloo 25



Distribution of the 
Data Sizes for

TAO query results

CS 848 University of Waterloo 26



Performance

• Availability : Over a period of 90 
days, the fraction of queries 
failed from the web server was 
fairly small but even a small 
fraction might have dynamic 
data dependence on the rest of 
the social graph.

• Follower Capacity : Peak 
throughput dependent on its hit 
rate (Figure 7)

CS 848 University of Waterloo 27



Hit rates & latency

CS 848 University of Waterloo 28



Replication 
lag & Failover

TAO’s slave storage servers lag 
their master by less than 1 second 
during 85% of the tracing window.

Less than 3 seconds – 99% time 
and less than 10 seconds – 99.8%

Failover caches contacted the 
leader 0.15% of follower cache 
misses over our sample.

CS 848 University of Waterloo 29



Related Work

• Eventual Consistency
• Geographically distributed data stores
• Distributed hash tables and key-value 

systems
• Hierarchical connectivity
• Structured storage
• Graph serving
• Graph Processing

CS 848 University of Waterloo 30



Conclusion
CS 848 University of Waterloo 31



Questions

• RAM arenas are configured manually to address specific 
caching problem, will automating it add to cost-
overhead?

• Lack of atomicity between two updates of write 
operations might result into hanging associations if 
failure occurs. Is there a better way to resolve this than 

• Challenges of graph databases.
• Will this model work if Facebook starts behaving like 

Twitter and transactions are equally write-heavy as well?
• Why is TAO API not suitable for other tasks such as

replication, backup and migration?

• Is eventual consistency good enough?

CS 848 University of Waterloo 32



References
• N. Bronson, et al., Tao: Facebook's Distributed Data Store For The Social Graph, Proc. USENIX Annual 

Technical Conference, pages 49-60, 2013

• D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin. Consistent Hashing and Random 
trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web. In Proceedings of the 
29th annual ACM Symposium on Theory of Computing, STOC, 1997

• R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab, D. 
Stafford, T. Tung, and V. Venkataramani. Scaling Memcache at Facebook. In Proceedings of the 10th USENIX 
conference on Networked Systems Design and Implementation, NSDI, 2013.

• W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t settle for eventual: scalable causal 
consistency for widearea storage with COPS. In T. Wobber and P. Druschel, editors, Proceedings of the 23rd 
ACM Symposium on Operating System Design and Implementation, SOSP. ACM, 2011.

• Neo4j. http://neo4j.org/.

• https://medium.com/coinmonks/tao-facebooks-distributed-database-for-social-graph-c2b45f5346ea

• Facebook Research. https://research.fb.com/

CS 848 University of Waterloo 33

https://medium.com/coinmonks/tao-facebooks-distributed-database-for-social-graph-c2b45f5346ea
https://research.fb.com/

